

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 4558-4562

Three new diterpenoids, tricalysiolide H and tricalysiones A and B, from *Tricalysia dubia*

Koichi Nishimura,^a Yukio Hitotsuyanagi,^a Kei-ichi Sakakura,^a Kazuya Fujita,^a Shigeki Tachihara,^a Haruhiko Fukaya,^a Yutaka Aoyagi,^a Tomoyo Hasuda,^a Takeshi Kinoshita^b and Koichi Takeya^{a,*}

^aSchool of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan ^bFaculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko-machi, Tsukui-gun, Kanagawa 199-0195, Japan

> Received 10 January 2007; accepted 19 February 2007 Available online 2 March 2007

Abstract—Three new diterpenoids, tricalysiolide H (1) and tricalysiones A (2) and B (3), with novel structural features were isolated from the wood of *Tricalysia dubia*, together with a known compound, cafestol (4). The structures of 1-3 were elucidated on the basis of 2D NMR spectroscopy and X-ray crystallographic analysis. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Tricalysia dubia (Lindl.) Ohwi (Rubiaceae), an evergreen shrub or tree, is distributed in Taiwan and the southern parts of China and Japan. From the leaves of this plant, the rearranged *ent*-kaurane glycosides, tricalysiosides A-G,¹ and the *ent*-kaurane glycosides, tricalysiosides H-O,² have been isolated. In our previous paper, six rearranged *ent*-kaurane diterpenes, tricalysiolides A-F, were isolated from the wood of this plant and their structures were elucidated.³ In the present study, from the wood of this plant, we isolated three novel kaurane diterpenoids, tricalysiolide H (1) and tricalysiones A (2) and B (3), and a known diterpene, cafestol (4),⁴ and determined the structures of 1-3 (Fig. 1).

2. Results and discussion

By a series of column chromatography on highly porous synthetic resin (Diaion HP-20), silica gel, aminopropyl-bonded silica gel, and ODS HPLC, a MeOH extract of air-dried wood of *T. dubia* afforded new diterpenoids named tricalysiolide H (1), tricalysiones A (2) and B (3) along with a known compound, cafestol (4).⁴ The identification of cafestol (4) was made by the spectroscopic data.

Tricalysiolide H (1) was isolated as colorless prisms. Its molecular formula, $C_{21}H_{32}O_5$, was determined from the $[M+H]^+$

Figure 1. Structures of tricalysiolide H (1), tricalysiones A (2), B (3), and cafestol (4) from *Tricalysia dubia*.

peak at m/z 365.2286 (calcd for C₂₁H₃₃O₅ 365.2328) in the HRESIMS. The IR spectrum indicated that **1** possessed hydroxyl (3420 cm⁻¹) and γ -lactone (1765 cm⁻¹) groups. The ¹H NMR spectrum gave signals due to one tertiary methyl (δ 0.85, s, 3H) and one methoxyl group (δ 3.44, s, 3H) (Table 1), and the ¹³C NMR spectrum gave the signals due to one methyl, 10 methylenes, four methines, five quaternary carbons, one of which being a carbonyl carbon, and one methoxyl carbon (Table 2). Detailed analysis of the ¹H–¹H COSY, HMQC, and HMBC spectra showed that **1** had the same B, C, and D ring structures as cafestol (**4**). By the

^{*} Corresponding author. Tel.: +81 42 676 3007; fax: +81 42 677 1436; e-mail: takeyak@ps.toyaku.ac.jp

Table 1. ¹H NMR data (500 MHz, δ) for tricalysiolide H (1), tricalysiones A (2) and B (3) in C₅D₅N^a

Proton	Tricalysiolide H (1)	Tricalysione A (2)	Tricalysione B (3)
1a	1.67 (m)	7.03 (d, 10.0)	5.95 (d, 10.0)
1b	1.21 (m)		
2a	2.32 (td, 13.9, 3.7)	5.93 (d, 10.0)	6.61 (dd, 10.0, 4.3)
2b	1.75 (m)		
4a		2.39 (dd, 17.6, 14.2)	
4b		2.25 (dd, 17.6, 3.8)	
5	1.97 (dd, 12.3, 2.2)	1.71 (m)	
6a	1.49 (m)	1.39 (dddd, 12.7, 12.7, 3.4)	3.19 (t, 12.3)
6b	1.45 (m)	1.15 (m)	2.67 (ddd, 12.0.
00	inte (iii)	····· ()	12.0.8.9)
7a	1.60 (dt. 13.0, 3.1)	1.57 (dt. 12.7.3.1)	1.92 (m)
7b	1.48 (td. 13.0. 3.9)	1.50 (td. 12.7, 3.8)	1.55 (ddd, 12.8.
			12.8.8.9)
9	1.22 (d. 8.0)	1.14 (d. 9.0)	3.19 (d. 7.5)
11a	1.22 (d, 0.0) 1.40 (dd, 11.3, 5.5)	1.76 (m)	1.85 (m)
11b	1.37 (m)	1.64 (dd, 15.4, 7.2)	1.46 (dd. 14.2, 5.9)
12a	1.91 (m)	1.94 (m)	1.90 (m)
12h	1.57 (m)	1.49 (m)	1.70 (m)
13	2.45 (d-like 3.0)	2.47 (d-like 3.4)	2.46 (s-like)
14a	1.99 (dd. 11.5, 4.1)	2.04 (dd. 11.3, 4.3)	2.06 (m)
14b	1.88 (d. 11.5)	1.85 (d. 11.3)	1.69 (d. 11.7)
15a	1.83 (d. 14.0)	1.82 (d. 14.0)	2.05 (d. 14.0)
15h	1.66 (d. 14.0)	1.70 (dd. 14.0, 1.6)	1.71 (d. 14.0)
17a	4.12 (dd. 10.8, 4.7)	4.13 (dd. 10.8, 4.4)	4.11 (dd. 11.0, 4.5)
17b	4.03 (dd. 10.8, 4.7)	4.06 (dd. 10.8, 4.4)	4.05 (dd. 11.0, 4.5)
18a	2.31 (dd. 14.0. 3.8)		7.06 (d. 1.8)
18b	2.17 (dd. 14.0, 6.3)		
19	5 42 (dd, 6 3, 3 8)		7.69 (d. 1.8)
20	0.85 (s. 3H)	1.07 (s. 3H)	1.89 (s. 3H)
OMe	3 44 (s. 3H)	1107 (0, 011)	1109 (0, 011)
OH-2	(0, 011)		7.66 (d. 4.3)
OH-16	5.12.(s)	5.24(s)	5.29 (s)
OH-17	6.10(t, 4.7)	6 16 (t, 4 4)	6.19(t, 4.5)
0	0.10 (0,)	0.10 (0,)	0.1.2 (0, 1.0)

^a Assignments based on ¹H-¹H COSY, HMQC, and HMBC experiments. Multiplicity and J-values in Hz are given in parentheses.

 $^{1}\text{H}-^{1}\text{H}$ COSY correlations between H₂-1 and H₂-2, and the HMBC correlations from H-1a, H₂-2, and H-5 to C-4 and from H₃-20 to C-1, C-5, and C-10, the A ring of **1** was indicated to be a cyclopentane ring, and by the correlations

Table 2. ¹³C NMR data (125 MHz, δ) for tricalysiolide H (1), tricalysiones A (2) and B (3) in C₅D₅N

Carbon	Tricalysiolide H (1)	Tricalysione A (2)	Tricalysione B (3)
1	41.6	161.1	129.8
2	38.9	126.6	64.2
3	183.0	199.3	160.6
4	50.6	41.3	121.1
5	57.9	45.8	195.4
6	21.5	26.5	39.3
7	41.4	40.9	35.8
8	44.3	45.1	48.3
9	54.9	48.8	42.2
10	47.8	41.2	140.3
11	21.3	19.0	23.2
12	26.5	26.3	25.9
13	46.2	45.8	45.9
14	37.9	38.3	40.1
15	53.2	53.6	47.4
16	81.5	81.6	82.0
17	66.4	66.4	66.1
18	40.9		111.2
19	103.7		142.2
20	17.4	17.3	24.7
OMe	56.8		

4559

from H₂-2, H-5, H₂-18, and H-19 to C-3, from H₂-18 to C-2 and C-4, from H-18b to C-5, and from H₂-2 and H-5 to C-18, the presence of a γ -lactone spiro-linked at C-4 of the A ring was implied. By an HMBC correlation from the methoxyl protons to C-19, the methoxyl group was indicated to be at C-19 (Fig. 2). NOE correlations between H-5/H-9, H-9/H-15b, and H-15b/H2-17 indicated that H-5, H-9, H-15b, and the C-17 hydroxymethyl were β -oriented, and those between H-14a/OH-16, H-14b/H₃-20, and H₂-18/H₃-20 indicated that the C-20 methyl, C-14 and C-18 methylenes, and the hydroxyl group at C-16 were α -oriented (Fig. 3). By an NOE correlation detected between H-6a and OCH₃-19, the relative stereochemistry on the lactone ring was assigned to be $4R^*$ and $19S^*$. From these observations, trically solide H (1) was considered to have the structure shown in Figure 1, which was confirmed by a single-crystal X-ray analysis (Fig. 4). Tricalysiolide H (1) is a diterpenoid having an unusual structure in which a γ -lactone is spiro-linked to the cyclopentane A ring of the rearranged kaurane skeleton. A possible biosynthetic route of 1 from cafestol (4), a known diterpenoid also isolated from this plant source in the present study, is depicted in Scheme 1. Oxidation of the furan ring of cafestol (4) produced keto-aldehyde 5, which, via subsequent 1,2-migration of C-2 to C-4 through benzilic acid rearrangement-like reaction, produced acid 6 having the contracted A ring, which then converted to 1.

Tricalysione A (2) was isolated as an amorphous solid. Its molecular formula was determined to be $C_{18}H_{26}O_3$ from the [M+H]⁺ peak at m/z 291.1942 (calcd for $C_{18}H_{27}O_3$ 291.1915) in the HRESIMS. The IR spectrum of 2 indicated the presence of hydroxyl (3410 cm⁻¹) and α , β -unsaturated ketone (1670 cm⁻¹) groups. The presence of an α , β -unsaturated ketone was also implied by the UV absorption maximum at 230 nm (log ε 3.86). The ¹H NMR spectrum showed characteristic signals of one tertiary methyl group (δ 1.07, s, 3H) and a pair of cis-coupled olefinic protons (δ 5.93 and 7.03, each d, J=10.0 Hz) (Table 1). The ¹³C

Figure 2. ¹H–¹H COSY and selected HMBC correlations for 1.

Figure 3. Selected NOE correlations for tricalysiolide H (1).

Figure 4. ORTEP representation of tricalysiolide H (1).

NMR spectrum gave signals of 18 carbons, comprising one methyl, eight methylenes, three methines, two olefinic methines, three quaternary carbons, and one ketone carbonyl carbon (Table 2). Analysis of the ¹H–¹H COSY, HMQC, and HMBC spectra revealed that the B, C, and D ring structures of **2** were the same as those of cafestol (**4**) (Fig. 5). By the ¹H–¹H COSY and HMQC spectra, C-4 (δ_C 41.3) of **2** was shown to be a methylene carbon. By the HMBC correlations

Figure 5. ¹H–¹H COSY and selected HMBC correlations for 2.

from an olefinic methine proton resonated at δ 7.03 to C-5 and C-10, one olefinic bond was placed at C-1/C-2, and by the correlations from H-1, H-2, and H₂-4 to the quaternary carbon at δ 199.3, a ketone was placed at C-3. By the NOE correlations between H-5/H-9, H-9/H-15b, and H-15b/ H₂-17, H-5, H-9, H-15b, and the C-17 hydroxymethyl were shown to be β -oriented, whereas by the correlations between H₃-20/H-14b and H-14a/OH-16, the C-20 methyl, C-14 methylene, and the hydroxyl group at C-16 were shown to be α -oriented. Accordingly, tricalysione A (**2**) was determined to have a bisnor-kauranoid structure given in Figure 1.

Tricalysione B (**3**) was isolated as an amorphous solid. Its molecular formula was determined to be $C_{20}H_{26}O_5$ from the [M+H]⁺ peak at m/z 347.1845 (calcd for $C_{20}H_{27}O_5$ 347.1858) in the HRESIMS. Its ¹H NMR spectrum showed the presence of one allylic methyl group (δ 1.89, s, 3H) and three olefinic protons (Table 1). The ¹³C NMR spectrum of **3** displayed signals due to one methyl, seven methylenes, three methines, two quaternary carbons, and a ketone carbonyl carbon (Table 2). By the analysis of the ¹H–¹H COSY, HMQC, and HMBC spectra, **3** was shown to have the same C and D ring structures as cafestol (**4**) (Fig. 6) and an α , β -disubstituted furan ring (δ_H 7.06 and 7.69, each d, J=1.8 Hz; δ_C 111.2 d, 121.1 s, 142.2 d, 160.6 s). By the HMBC correlations from H-9 and H₂-11 to the olefinic quaternary carbon

Figure 6. $^{1}H^{-1}H$ COSY and selected HMBC correlations for **3**.

Scheme 1. A possible biosynthetic pathway from cafestol (4) to tricalysiolide H (1).

Figure 7. Selected NOE correlations for tricalysione B (3).

resonated at δ 140.3 and from H-9 to the olefinic methine carbon at δ 129.8, one olefinic bond was placed at C-1/C-10. By the correlation of H-2 with H-1 (δ 5.95) in the ¹H–¹H COSY spectrum, the oxymethine proton at δ 6.61 was assigned to H-2. This oxymethine proton was also correlated with a hydroxyl proton at δ 7.66, thus indicating the presence of a hydroxyl group at C-2. The furan ring was considered to be fused at C-3/C-4, because one of the quaternary carbons of the furan ring at δ 160.6 was correlated with H-1 and OH-2, and the other quaternary carbon at δ 121.1 was correlated with H-6b in the HMBC spectrum. By the HMBC correlations from H₂-6, H-7a, and H-18 to the carbonyl carbon at δ 195.4, a ketone was placed at C-5 (Fig. 6). These observations and the fact that it had eight degrees of unsaturation as deduced from the molecular formula implied that compound 3 was a new diterpenoid having a 5,10-seco-kauranoid skeleton. The stereochemistry of 3 was determined on the basis of NOESY experiments in CD₃OD (Fig. 7). By the NOE correlations between H-1 and H₃-20, the geometry of the C-1/C-10 double bond was assigned as Z. NOE correlations between H-2/H-6a, H-2/ H-9, H-6a/H-9, H-9/H-15a, and H-15a/H₂-17 indicated that H-2, H-9, H-15a, and the C-17 hydroxymethyl were β-oriented; hence the hydroxyl group at C-2 was concluded to be α -oriented. Thus, the structure of tricalysione B (3) was determined to be as shown in Figure 1.

The three new diterpenoids, tricalysiolide H (1), and tricalysiones A (2) and B (3), isolated from the wood of *T. dubia* possess characteristic structural features. Tricalysiolide H (1) has a novel carbon framework, tricalysione A (2) is a 18,19-bisnor-kauranoid, not previously reported in natural products, and tricalysione B (3) contains a rare 5,10-seco-kauranoid skeleton.⁵ The absolute configuration of compounds 1–3 remains to be established, but it may be reasonable to consider that these compounds are *ent*-derivatives, because the related kauranoids, tricalysiosides A–G,¹ tricalysiolides A– F,³ and cafestol (4),^{4,6} isolated from this plant, are all of *ent*-configuration.

3. Experimental

3.1. General experimental procedures

Optical rotations were measured on a JASCO P1030 digital polarimeter, IR spectra on a JASCO FT/IR 620 spectrophotometer, and UV spectra on a JASCO V-530 spectrophotometer. NMR spectra were measured on a Bruker DRX-500 spectrometer at 300 K. The ¹H chemical shifts in C₅D₅N and in CD₃OD were referenced to the residual C₅D₄HN resonance at 7.21 ppm and CD₂HOD at 3.31 ppm, respectively, and the ¹³C chemical shifts in C₅D₅N and in CD₃OD were referenced to the solvent resonance at 135.5 ppm and 49.0 ppm, respectively. Mass spectra were obtained by using a Micromass LCT spectrometer. Preparative HPLC was carried out on a JASCO PU-986 pump unit equipped with a UV-970 UV detector (λ =220 nm) and an Inertsil PREP-ODS column (10 µm, 20×250 mm), using a MeOH–H₂O or a MeCN–H₂O solvent system at a flow rate of 10 mL/min. X-ray single-crystal analysis was taken on a Mac Science DIP diffractometer with Mo K α radiation (λ =0.71073 Å).

3.2. Plant material

Wood of *T. dubia* was collected in Iriomote Island, Okinawa, in March 2005, and the plant origin was identified by Dr. T. Kinoshita (Teikyo University, Japan). A voucher specimen has been deposited at the Herbarium, Medicinal Plant Garden, Teikyo University (Sagamiko-machi, Kanagawa).

3.3. Extraction and isolation

Cut and air-dried wood (17.1 kg) of T. dubia was extracted with MeOH (3×40 L). After removal of MeOH under reduced pressure, the residue (1.2 kg) was placed on a column of HP-20 (Diaion, 3.5 kg) and eluted with H₂O, H₂O-MeOH (1:1), H_2O –MeOH (1:4), MeOH, and acetone (each 15 L) sequentially to give five fractions. After removal of the solvent, the residue of the H_2O –MeOH (1:4) eluate (192 g) was subjected to silica gel (Merck Kieselgel 60, 230-400 mesh, 1.5 kg) column chromatography eluting sequentially with CHCl₃, CHCl₃-MeOH (20:1), CHCl₃-MeOH (10:1), CHCl₃-MeOH (3:1), and MeOH (each 6 L). After evaporation, the CHCl₃ eluate (76.8 g) was subjected to aminopropyl-bonded silica gel (Chromatorex, 200-350 mesh, 700 g) column chromatography eluting sequentially with CHCl₃-MeOH (250:1), CHCl₃-MeOH (100:1), CHCl₃-MeOH (50:1), CHCl₃-MeOH (20:1), CHCl₃-MeOH (10:1), and MeOH (each 2 L) to give six fractions. The first fraction (4.2 g) was subjected to silica gel column chromatography eluting sequentially with toluene-MeOH (5:1) and MeOH to give eight fractions. The fifth fraction (1.6 g) of the toluene-MeOH (5:1) eluates was further separated by ODS HPLC using MeOH-H₂O (45:55) to afford fractions A-E. Fraction D (395 mg) was separated by repeated ODS HPLC using MeCN-H₂O (25:75) and then MeOH-H₂O (40:60) to afford 2 (5.9 mg). Separation of fraction E (531 mg) by ODS HPLC using MeOH-H₂O (50:50) and then MeCN-H₂O (23:77) afforded 1 (4.2 mg).

The CHCl₃–MeOH (10:1) fraction (25.1 g) of the first silica gel column chromatography was subjected to aminopropylbonded silica gel column chromatography eluting sequentially with CHCl₃–MeOH (30:1), CHCl₃–MeOH (20:1), CHCl₃–MeOH (10:1), and MeOH to give seven fractions. The first fraction (994 mg) was subjected to silica gel column chromatography eluting sequentially with CHCl₃– MeOH (30:1), CHCl₃–MeOH (15:1), and MeOH to give nine fractions. The eighth fraction (294 mg), eluted with CHCl₃–MeOH (15:1), was further purified by repeated ODS HPLC using MeOH–H₂O (35:65) and then MeCN–H₂O (19:81) to afford **3** (2.0 mg).

The residue of the MeOH eluate (209 g) of the HP-20 column chromatography was subjected to silica gel column chromatography eluting sequentially with EtOAc, toluene-MeOH (5:1), CHCl₃-MeOH (5:1), and MeOH (each 6 L). After evaporation, the EtOAc eluate (104 g) was subjected to aminopropyl-bonded silica gel column chromatography eluting with CHCl₃, CHCl₃-MeOH (100:1), and then MeOH to afford seven fractions. The third fraction (9.7 g), eluted with CHCl₃-MeOH (100:1), was subjected to silica gel column chromatography eluting with toluene-MeOH (12:1) and then MeOH to give eight fractions. The fourth fraction (2.4 g) was further separated by silica gel column chromatography using CHCl₃-MeOH (20:1), CHCl₃-MeOH (15:1), and then MeOH to give five fractions. The third fraction (1.0 g), eluted with CHCl3-MeOH (20:1), was subjected to silica gel column chromatography using toluene-acetone-MeOH (15:1:1) to give five fractions. The second fraction (0.55 g) was separated by repeated ODS HPLC using MeOH-H₂O (50:50) and then MeCN-H₂O (35:65) to give **4** (157 mg).

3.4. Characteristics of each terpenoid

3.4.1. Tricalysiolide H (1). Colorless prisms (MeOH); mp 206–208 °C; $[\alpha]_D^{26}$ –14 (*c* 0.12, pyridine); IR (film) ν_{max} 3420, 2931, 2867, 1765, 1449, 1360, 1165, 1125, 1026 cm⁻¹; ¹H and ¹³C NMR data, Tables 1 and 2; HRE-SIMS *m/z* 365.2286 [M+H]⁺ (calcd for C₂₁H₃₃O₅ 365.2328).

3.4.2. Tricalysione A (2). Amorphous solid; $[\alpha]_{D}^{26} - 75$ (*c* 0.14, CHCl₃); IR (film) ν_{max} 3410, 2927, 2864, 1670, 1469, 1450, 1254, 1055, 1018 cm⁻¹; UV (MeOH) λ_{max} nm (log ε) 230 (3.86); ¹H and ¹³C NMR data, Tables 1 and 2; HRESIMS *m*/*z* 291.1942 [M+H]⁺ (calcd for C₁₈H₂₇O₃ 291.1915).

3.4.3. Tricalysione B (3). Amorphous solid; $[\alpha]_D^{25} - 102$ (*c* 0.10, pyridine); IR (film) v_{max} 3377, 2925, 2855, 1651, 1566, 1463, 1408, 1260, 1030 cm⁻¹; UV (MeOH) λ_{max} nm (log ε) 206 (3.86), 267 (3.40); ¹H and ¹³C NMR data in C₅D₅N, Tables 1 and 2; ¹H NMR (500 MHz, CD₃OD) δ 7.49 (1H, d, J=1.9 Hz, H-19), 6.70 (1H, d, J=1.9 Hz, H-18), 6.13 (1H, d, J=10.2 Hz, H-2), 5.53 (1H, d, J=10.2 Hz, H-1), 3.76 (1H, d, J=11.4 Hz, H-17a), 3.67 (1H, d, J=11.4 Hz, H-17b), 3.14 (1H, d, J=7.2 Hz, H-9), 3.08 (1H, t, J=12.4 Hz, H-6a), 2.43 (1H, ddd, J=12.2, 12.2, 9.0 Hz, H-6b), 2.10 (1H, s-like, H-13), 1.98 (3H, s, H₃-20), 1.93 (1H, m, H-11a), 1.81–1.70 (6H, m, H-7a, H-12a, H-12b, H-14a, H-14b, H-15a), 1.68 (1H, d, J=14.6 Hz, H-15b), 1.63 (1H, dd, J=14.8, 5.8 Hz, H-11b), 1.43 (1H, ddd, J=13.2, 12.7, 9.0 Hz, H-7b); ¹³C NMR (125 MHz, CD₃OD) δ 198.1 (C, C-5), 160.8 (C, C-3), 143.2 (CH, C-19), 142.4 (C, C-10), 129.0 (CH, C-1), 121.6 (C, C-4), 111.3 (CH, C-18), 83.2 (C, C-16), 66.6 (CH₂, C-17), 64.9 (CH, C-2), 47.6 (CH₂, C-15), 46.3 (CH, C-13),

43.2 (CH, C-9), 40.5 (CH₂, C-14), 39.6 (CH₂, C-6), 36.5 (CH₂, C-7), 26.4 (CH₂, C-12), 24.8 (CH₃, C-20), 23.9 (CH₂, C-11); HRESIMS *m*/*z* 347.1845 [M+H]⁺ (calcd for $C_{20}H_{27}O_5$ 347.1858).

3.5. Single-crystal X-ray crystallography of 1⁷

 $C_{21}H_{32}O_5 \cdot CH_3OH;$ M = 396.51: $0.48 \times 0.33 \times 0.33$ mm; monoclinic; space group $P2_1$; a=7.4610(5) Å; b=6.3650(2) Å; c=22.0660(14) Å; $\beta = 94.992(3)^{\circ}$: V =1044.03(10) Å³: Z=2: $D_x=1.261 \text{ Mg m}^{-3}$: $\mu(\text{Mo K}\alpha)=$ 0.090 mm⁻¹; 2442 measured reflections, 2442 unique reflections, 2199 observed reflections $[I>2\sigma(I)]$, $R_1=0.0332$, $wR_2 = 0.0856$ (observed data), GOF=0.998; $R_1 = 0.0363$, $wR_2=0.0864$ (all data). The structure was solved by direct methods using the maXus crystallographic software package,⁸ and refined by full-matrix least-squares on F^2 using the program SHELXL-97.9 The absolute structure could not be determined crystallographically.

Acknowledgements

Our thanks are due to Tropical Biosphere Research Center, Iriomote Station, University of the Ryukyus for providing us with the facilities during our collection of the plant material.

References and notes

- 1. He, D.-H.; Otsuka, H.; Hirata, E.; Shinzato, T.; Bando, M.; Takeda, Y. *J. Nat. Prod.* **2002**, *65*, 685–688.
- He, D.-H.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Aramoto, M.; Bando, M.; Takeda, Y. *Phytochemistry* 2005, 66, 2857– 2864.
- Nishimura, K.; Hitotsuyanagi, Y.; Sugeta, N.; Sakakura, K.; Fujita, K.; Fukaya, H.; Aoyagi, Y.; Hasuda, T.; Kinoshita, T.; He, D.-H.; Otsuka, H.; Takeda, Y.; Takeya, K. *Tetrahedron* 2006, 62, 1512–1519.
- 4. Richter, H.; Spiteller, G. Chem. Ber. 1979, 112, 1088-1092.
- 5. Katai, M.; Terai, T.; Meguri, H. Chem. Lett. 1985, 443-446.
- Djerassi, C.; Cais, M.; Mitscher, L. A. J. Am. Chem. Soc. 1959, 81, 2386–2398.
- Crystallographic data for tricalysiolide H (1) reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, under the reference number CCDC-633038. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 (0) 1223 336033 or e-mail: deposit@ccdc. cam.ac.uk).
- Mackay, S.; Gilmore, C. J.; Edwards, C.; Stewart, N.; Shankland, K. maXus: Computer Program for the Solution and Refinement of Crystal Structures; Bruker Nonius: Delft, The Netherlands, MacScience: Yokohama, Japan, and The University of Glasgow: Glasgow, UK, 1999.
- 9. Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.